Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965290

RESUMO

We critically re-examine 17 records of fossils currently assigned to the lepidopteran superfamily Bombycoidea, which includes the silk moths, emperor moths and hawk moths. These records include subfossils, compression and impression fossils, permineralizations and ichnofossils. We assess whether observable morphological features warrant their confident assignment to the superfamily. None of the examined fossils displays characters that allow unequivocal identification as Sphingidae, but three fossils and a subfossil (Mioclanis shanwangiana Zhang, Sun and Zhang, 1994, two fossil larvae, and a proboscis in asphaltum) have combinations of diagnostic features that support placement in the family. The identification of a fossil pupa as Bunaeini (Saturniidae) is well supported. The other fossils that we evaluate lack definitive bombycoid and, in several cases, even lepidopteran characters. Some of these dubious fossils have been used as calibration points in earlier studies casting doubt on the resulting age estimates. All fossil specimens reliably assigned to Bombycoidea are relatively young, the earliest fossil evidence of the superfamily dating to the middle Miocene.


Assuntos
Manduca , Mariposas , Animais , Fósseis , Filogenia , Larva
2.
PeerJ ; 11: e16022, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842065

RESUMO

Background: Broad-scale monitoring of arthropods is often carried out with passive traps (e.g., Malaise traps) that can collect thousands of specimens per sample. The identification of individual specimens requires time and taxonomic expertise, limiting the geographical and temporal scale of research and monitoring studies. DNA metabarcoding of bulk-sample homogenates has been found to be faster, efficient and reliable, but the destruction of samples prevents a posteriori validation of species occurrences and relative abundances. Non-destructive metabarcoding of DNA extracted from collection medium has been applied in a limited number of studies, but further tests of efficiency are required with different trap types and collection media to assess the consistency of the method. Methods: We quantified the detection rate of arthropod species when applying non-destructive DNA metabarcoding with a short (127-bp) fragment of mitochondrial COI on two combinations of passive traps and collection media: (1) water with monopropylene glycol (H2O-MPG) used in window-flight traps (WFT, 53 in total); (2) ethanol with monopropylene glycol (EtOH-MPG) used in Malaise traps (MT, 27 in total). We then compared our results with those obtained for the same samples using morphological identification (for WFTs) or destructive metabarcoding of bulk homogenate (for MTs). This comparison was applied as part of a larger study of arthropod species richness in silver fir (Abies alba Mill., 1759) stands across a range of climate-induced tree dieback levels and forest management strategies. Results: Of the 53 H2O-MPG samples from WFTs, 16 produced no metabarcoding results, while the remaining 37 samples yielded 77 arthropod MOTUs in total, of which none matched any of the 343 beetle species morphologically identified from the same traps. Metabarcoding of 26 EtOH-MPG samples from MTs detected more arthropod MOTUs (233) than destructive metabarcoding of homogenate (146 MOTUs, 8 orders), of which 71 were shared MOTUs, though MOTU richness per trap was similar between treatments. While we acknowledge the failure of metabarcoding from WFT-derived collection medium (H2O-MPG), the treatment of EtOH-based Malaise trapping medium remains promising. We conclude however that DNA metabarcoding from collection medium still requires further methodological developments and cannot replace homogenate metabarcoding as an approach for arthropod monitoring. It can be used nonetheless as a complementary treatment when enhancing the detection of soft-bodied arthropods like spiders and Diptera.


Assuntos
Biodiversidade , Dípteros , Animais , Código de Barras de DNA Taxonômico/métodos , DNA/genética , Dípteros/genética , Etanol , Glicóis
3.
PLoS One ; 18(5): e0285010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256837

RESUMO

The genus Lonomia Walker, 1855 (Lepidoptera: Saturniidae) is of particular interest to the medical community, since the scoli of these caterpillars harbor a venom that induces hemorrhaging in humans. In Colombia, deadly encounters with Lonomia achelous (Cramer, 1777), have been reported since 2000. There is little information on the main biological and ecological aspects of this genus to help better understand and develop prevention strategies. This study aimed to describe morphological and biological aspects (especially of immature stages) of four recently reported species of Lonomia in Colombia that pose a risk to humans. We collected caterpillars and adults from five localities and reared them under laboratory conditions. Specimens were identified using DNA barcoding and dissection of adult male genitalia. We provided the first description, to our knowledge, of part of the life cycles of Lonomia casanarensis Brechlin, 2017 and Lonomia orientoandensis Brechlin & Meister, 2011 and the complete life cycles of Lonomia columbiana Lemaire, 1972 and Lonomia orientocordillera Brechlin, Käch & Meister, 2013. We also present the first records of the parasitoids of L. orientocordillera, and L. casanarensis and new host plants. This information will guide not only their morphological recognition and the identification of their parasitoids and hosts, but also will guide rearing methods of these and other Lonomia species in new studies to prevent incidents with humans and create specific antivenoms.


Assuntos
Venenos de Artrópodes , Lepidópteros , Manduca , Mariposas , Humanos , Masculino , Adulto , Animais , Lepidópteros/genética , Colômbia , Larva/genética
4.
PLoS Negl Trop Dis ; 17(2): e0011063, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36821543

RESUMO

Caterpillars of the Neotropical genus Lonomia (Lepidoptera: Saturniidae) are responsible for some fatal envenomation of humans in South America inducing hemostatic disturbances in patients upon skin contact with the caterpillars' spines. Currently, only two species have been reported to cause hemorrhagic syndromes in humans: Lonomia achelous and Lonomia obliqua. However, species identifications have remained largely unchallenged despite improved knowledge of venom diversity and growing evidence that the taxonomy used over past decades misrepresents and underestimates species diversity. Here, we revisit the taxonomic diversity and distribution of Lonomia species using the most extensive dataset assembled to date, combining DNA barcodes, morphological comparisons, and geographical information. Considering new evidence for seven undescribed species as well as three newly proposed nomenclatural changes, our integrative approach leads to the recognition of 60 species, of which seven are known or strongly suspected to cause severe envenomation in humans. From a newly compiled synthesis of epidemiological data, we also examine the consequences of our results for understanding Lonomia envenomation risks and call for further investigations of other species' venom activities. This is required and necessary to improve alertness in areas at risk, and to define adequate treatment strategies for envenomed patients, including performing species identification and assessing the efficacy of anti-Lonomia serums against a broader diversity of species.


Assuntos
Venenos de Artrópodes , Mariposas , Animais , Humanos , Larva , Venenos de Artrópodes/toxicidade , Hemorragia , América do Sul
5.
Proc Biol Sci ; 289(1968): 20212435, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35135350

RESUMO

The regions of the Andes and Caribbean-Mesoamerica are both hypothesized to be the cradle for many Neotropical lineages, but few studies have fully investigated the dynamics and interactions between Neotropical bioregions. The New World hawkmoth genus Xylophanes is the most taxonomically diverse genus in the Sphingidae, with the highest endemism and richness in the Andes and Caribbean-Mesoamerica. We integrated phylogenomic and DNA barcode data and generated the first time-calibrated tree for this genus, covering 93.8% of the species diversity. We used event-based likelihood ancestral area estimation and biogeographic stochastic mapping to examine the speciation and dispersal dynamics of Xylophanes across bioregions. We also used trait-dependent diversification models to compare speciation and extinction rates of lineages associated with different bioregions. Our results indicate that Xylophanes originated in Caribbean-Mesoamerica in the Late Miocene, and immediately diverged into five major clades. The current species diversity and distribution of Xylophanes can be explained by two consecutive phases. In the first phase, the highest Xylophanes speciation and emigration rates occurred in the Caribbean-Mesoamerica, and the highest immigration rates occurred in the Andes, whereas in the second phase the highest immigration rates were found in Amazonia, and the Andes had the highest speciation and emigration rates.


Assuntos
Mariposas , Animais , Teorema de Bayes , Região do Caribe , Especiação Genética , Filogenia , Filogeografia
6.
Syst Biol ; 71(4): 859-874, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34791485

RESUMO

One of the key objectives in biological research is understanding how evolutionary processes have produced Earth's diversity. A critical step toward revealing these processes is an investigation of evolutionary tradeoffs-that is, the opposing pressures of multiple selective forces. For millennia, nocturnal moths have had to balance successful flight, as they search for mates or host plants, with evading bat predators. However, the potential for evolutionary trade-offs between wing shape and body size are poorly understood. In this study, we used phylogenomics and geometric morphometrics to examine the evolution of wing shape in the wild silkmoth subfamily Arsenurinae (Saturniidae) and evaluate potential evolutionary relationships between body size and wing shape. The phylogeny was inferred based on 782 loci from target capture data of 42 arsenurine species representing all 10 recognized genera. After detecting in our data one of the most vexing problems in phylogenetic inference-a region of a tree that possesses short branches and no "support" for relationships (i.e., a polytomy), we looked for hidden phylogenomic signal (i.e., inspecting differing phylogenetic inferences, alternative support values, quartets, and phylogenetic networks) to better illuminate the most probable generic relationships within the subfamily. We found there are putative evolutionary trade-offs between wing shape, body size, and the interaction of fore- and hindwing (HW) shape. Namely, body size tends to decrease with increasing HW length but increases as forewing (FW) shape becomes more complex. Additionally, the type of HW (i.e., tail or no tail) a lineage possesses has a significant effect on the complexity of FW shape. We outline possible selective forces driving the complex HW shapes that make Arsenurinae, and silkmoths as a whole, so charismatic. [Anchored hybrid enrichment; Arsenurinae; geometric morphometrics; Lepidoptera; phylogenomics; Saturniidae.].


Assuntos
Bombyx , Mariposas , Animais , Evolução Biológica , Tamanho Corporal , Filogenia , Asas de Animais
7.
Zookeys ; 1031: 183-204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33958913

RESUMO

The Saturniidae is one of the most emblematic families of moths, comprising nearly 3000 species distributed globally. In this study, DNA barcode analysis and comparative morphology were combined to describe three new species within the genus Automeris, which is the most diverse genus in the family. Automeris llaneros Decaëns, Rougerie & Bonilla, sp. nov., Automeris mineros Decaëns, Rougerie & Bonilla, sp. nov., and Automeris belemensis Decaëns, Rougerie & Bénéluz, sp. nov. are described from the Colombian Orinoco watershed, the Colombian Eastern Cordillera, and the area of endemism of Belém in the Brazilian Amazonia, respectively. They all belong to the Automeris bilinea (Walker, 1855) species subgroup, which comprises a number of species that are sometimes difficult to distinguish from each other using morphology alone. Here, the description of these three new species is based on significant differences from their closest relatives, either in terms of wing patterns, genitalia, DNA barcodes or a combination of these features.

8.
Zootaxa ; 4942(3): zootaxa.4942.3.2, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33757056

RESUMO

Gamelia bennetti sp. nov. is described from Trinidad, Trinidad and Tobago, West Indies, and compared with members of the Gamelia abas species group: G. abas (Cramer, [1775]), G. berliozi Lemaire, 1967, G. lichyi Lemaire, 1973, G. rubriluna (Walker, 1862) and G. septentrionalis (Bouvier, 1936). A photographic record suggests G. bennetti sp. nov. may also occur in Tobago.


Assuntos
Lepidópteros , Animais , Trinidad e Tobago
9.
Zootaxa ; 5081(2): 151-202, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35391014

RESUMO

Based on the review of literature and biological collections, information retrieved from public online databases, and from fieldwork conducted between 2015 and 2020, we provide more than 3500 occurrence records and an updated checklist of Colombian Saturniidae, annotated with distribution data for all species. In the first checklist of Colombian saturniids published two decades ago, a total of 184 species were cited; in the current update the number has risen to 653 species/subspecies classified in 55 genera, representing all six recognized Neotropical subfamilies. The Andean and Pacific regions are the richest, accounting for about three quarters of all species listed herein. We call attention to the fact that for most speciose saturniid genera in the Neotropics, there remains a significant need for further taxonomic and systematic research with objective and integrative approaches. Likewise, it is necessary to continue the study of Saturniidae moths in Colombia, strategically increasing the sampling efforts in specific under-sampled natural regions to further document the diversity of this family in the country.


Assuntos
Bombyx , Lepidópteros , Mariposas , Animais , Colômbia
10.
Biodivers Data J ; 8: e60027, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343218

RESUMO

BACKGROUND: Herbivorous insects represent a major fraction of global biodiversity and the relationships they have established with their food plants range from strict specialists to broad generalists. Our knowledge of these relationships is of primary importance to basic (e.g. the study of insect ecology and evolution) and applied biology (e.g. monitoring of pest or invasive species) and yet remains very fragmentary and understudied. In Lepidoptera, caterpillars of families Saturniidae and Sphingidae are rather well known and considered to have adopted contrasting preferences in their use of food plants. The former are regarded as being rather generalist feeders, whereas the latter are more specialist. NEW INFORMATION: To assemble and synthesise the vast amount of existing data on food plants of Lepidoptera families Saturniidae and Sphingidae, we combined three major existing databases to produce a dataset collating more than 26,000 records for 1256 species (25% of all species) in 121 (67%) and 167 (81%) genera of Saturniidae and Sphingidae, respectively. This dataset is used here to document the level of polyphagy of each of these genera using summary statistics, as well as the calculation of a polyphagy score derived from the analysis of Phylogenetic Diversity of the food plants used by the species in each genus.

11.
Genome ; 62(3): 96-107, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30278147

RESUMO

Biodiversity research in tropical ecosystems-popularized as the most biodiverse habitats on Earth-often neglects invertebrates, yet invertebrates represent the bulk of local species richness. Insect communities in particular remain strongly impeded by both Linnaean and Wallacean shortfalls, and identifying species often remains a formidable challenge inhibiting the use of these organisms as indicators for ecological and conservation studies. Here we use DNA barcoding as an alternative to the traditional taxonomic approach for characterizing and comparing the diversity of moth communities in two different ecosystems in Gabon. Though sampling remains very incomplete, as evidenced by the high proportion (59%) of species represented by singletons, our results reveal an outstanding diversity. With about 3500 specimens sequenced and representing 1385 BINs (Barcode Index Numbers, used as a proxy to species) in 23 families, the diversity of moths in the two sites sampled is higher than the current number of species listed for the entire country, highlighting the huge gap in biodiversity knowledge for this country. Both seasonal and spatial turnovers are strikingly high (18.3% of BINs shared between seasons, and 13.3% between sites) and draw attention to the need to account for these when running regional surveys. Our results also highlight the richness and singularity of savannah environments and emphasize the status of Central African ecosystems as hotspots of biodiversity.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA/genética , Mariposas/classificação , Mariposas/genética , Clima Tropical , Animais , DNA/análise , Ecossistema , Gabão
12.
Genome ; 62(3): 108-121, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30184444

RESUMO

Madagascar is a prime evolutionary hotspot globally, but its unique biodiversity is under threat, essentially from anthropogenic disturbance. There is a race against time to describe and protect the Madagascan endangered biota. Here we present a first molecular characterization of the micromoth fauna of Madagascar. We collected 1572 micromoths mainly using light traps in both natural and anthropogenically disturbed habitats in 24 localities across eastern and northwest Madagascar. We also collected 1384 specimens using a Malaise trap in a primary rain forest at Andasibe, eastern Madagascar. In total, we DNA barcoded 2956 specimens belonging to 1537 Barcode Index Numbers (BINs), 88.4% of which are new to BOLD. Only 1.7% of new BINs were assigned to species. Of 47 different families found, Dryadaulidae, Bucculatricidae, Bedelliidae, Batrachedridae, and Blastobasidae are newly reported for Madagascar and the recently recognized Tonzidae is confirmed. For test faunas of Canada and Australia, 98.9%-99.4% of Macroheterocera BINs exhibited the molecular synapomorphy of a phenylalanine in the 177th complete DNA barcode codon. Non-macroheteroceran BINs could thus be sifted out efficiently in the Malaise sample. The Madagascar micromoth fauna shows highest affinity with the Afrotropics (146 BINs also occur in the African continent). We found 22 recognised pests or invasive species, mostly occurring in disturbed habitats. Malaise trap samples show high temporal turnover and alpha diversity with as many as 507 BINs collected; of these, astonishingly, 499 (98.4%) were novel to BOLD and 292 (57.6%) were singletons. Our results provide a baseline for future surveys across the island.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA/genética , Ecossistema , Espécies Introduzidas/estatística & dados numéricos , Mariposas/classificação , Mariposas/genética , Animais , DNA/análise , Madagáscar
13.
Conserv Biol ; 32(6): 1380-1391, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30113727

RESUMO

Assessing how much management of agricultural landscapes, in addition to protected areas, can offset biodiversity erosion in the tropics is a central issue for conservation that still requires cross-taxonomic and landscape-scale studies. We measured the effects of Amazonia deforestation and subsequent land-use intensification in 6 agricultural areas (landscape scale), where we sampled plants and 4 animal groups (birds, earthworms, fruit flies, and moths). We assessed land-use intensification with a synthetic index based on landscape metrics (total area and relative percentages of land uses, edge density, mean patch density and diversity, and fractal structures at 5 dates from 1990 to 2007). Species richness decreased consistently as agricultural intensification increased despite slight differences in the responses of sampled groups. Globally, in moderately deforested landscapes species richness was relatively stable, and there was a clear threshold in biodiversity loss midway along the intensification gradient, mainly linked to a drop in forest cover and quality. Our results suggest anthropogenic landscapes with high-quality forest covering >40 % of the surface area may prevent biodiversity loss in Amazonia.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Agricultura , Animais , Brasil , Florestas
14.
Biodivers Data J ; (6): e22236, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29674935

RESUMO

BACKGROUND: Bombycoidea is an ecologically diverse and speciose superfamily of Lepidoptera. The superfamily includes many model organisms, but the taxonomy and classification of the superfamily has remained largely in disarray. Here we present a global checklist of Bombycoidea. Following Zwick (2008) and Zwick et al. (2011), ten families are recognized: Anthelidae, Apatelodidae, Bombycidae, Brahmaeidae, Carthaeidae, Endromidae, Eupterotidae, Phiditiidae, Saturniidae and Sphingidae. The former families Lemoniidae and Mirinidae are included within Brahmaeidae and Endromidae respectively. The former bombycid subfamilies Oberthueriinae and Prismostictinae are also treated as synonyms of Endromidae, and the former bombycine subfamilies Apatelodinae and Phitditiinae are treated as families. NEW INFORMATION: This checklist represents the first effort to synthesize the current taxonomic treatment of the entire superfamily. It includes 12,159 names and references to their authors, and it accounts for the recent burst in species and subspecies descriptions within family Saturniidae (ca. 1,500 within the past 10 years) and to a lesser extent in Sphingidae (ca. 250 species over the same period). The changes to the higher classification of Saturniidae proposed by Nässig et al. (2015) are rejected as premature and unnecessary. The new tribes, subtribes and genera described by Cooper (2002) are here treated as junior synonyms. We also present a new higher classification of Sphingidae, based on Kawahara et al. (2009), Barber and Kawahara (2013) and a more recent phylogenomic study by Breinholt et al. (2017), as well as a reviewed genus and species level classification, as documented by Kitching (2018).

15.
Ecol Evol ; 7(23): 9991-10004, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29238531

RESUMO

We have little knowledge of the response of invertebrate assemblages to climate change in tropical ecosystems, and few studies have compiled long-term data on invertebrates from tropical rainforests. We provide an updated list of the 72 species of Saturniidae moths collected on Barro Colorado Island (BCI), Panama, during the period 1958-2016. This list will serve as baseline data for assessing long-term changes of saturniids on BCI in the future, as 81% of the species can be identified by their unique DNA Barcode Index Number, including four cryptic species not yet formally described. A local species pool of 60 + species breeding on BCI appears plausible, but more cryptic species may be discovered in the future. We use monitoring data obtained by light trapping to analyze recent population trends on BCI for saturniid species that were relatively common during 2009-2016, a period representing >30 saturniid generations. The abundances of 11 species, of 14 tested, could be fitted to significant time-series models. While the direction of change in abundance was uncertain for most species, two species showed a significant increase over time, and forecast models also suggested continuing increases for most species during 2017-2018, as compared to the 2009 base year. Peaks in saturniid abundance were most conspicuous during El Niño and La Niña years. In addition to a species-specific approach, we propose a reproducible functional classification based on five functional traits to analyze the responses of species sharing similar functional attributes in a fluctuating climate. Our results suggest that the abundances of larger body-size species with good dispersal abilities may increase concomitantly with rising air temperature in the future, because short-lived adults may allocate less time to increasing body temperature for flight, leaving more time available for searching for mating partners or suitable oviposition sites.

16.
Syst Biol ; 65(6): 1024-1040, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27288478

RESUMO

The proliferation of DNA data is revolutionizing all fields of systematic research. DNA barcode sequences, now available for millions of specimens and several hundred thousand species, are increasingly used in algorithmic species delimitations. This is complicated by occasional incongruences between species and gene genealogies, as indicated by situations where conspecific individuals do not form a monophyletic cluster in a gene tree. In two previous reviews, non-monophyly has been reported as being common in mitochondrial DNA gene trees. We developed a novel web service "Monophylizer" to detect non-monophyly in phylogenetic trees and used it to ascertain the incidence of species non-monophyly in COI (a.k.a. cox1) barcode sequence data from 4977 species and 41,583 specimens of European Lepidoptera, the largest data set of DNA barcodes analyzed from this regard. Particular attention was paid to accurate species identification to ensure data integrity. We investigated the effects of tree-building method, sampling effort, and other methodological issues, all of which can influence estimates of non-monophyly. We found a 12% incidence of non-monophyly, a value significantly lower than that observed in previous studies. Neighbor joining (NJ) and maximum likelihood (ML) methods yielded almost equal numbers of non-monophyletic species, but 24.1% of these cases of non-monophyly were only found by one of these methods. Non-monophyletic species tend to show either low genetic distances to their nearest neighbors or exceptionally high levels of intraspecific variability. Cases of polyphyly in COI trees arising as a result of deep intraspecific divergence are negligible, as the detected cases reflected misidentifications or methodological errors. Taking into consideration variation in sampling effort, we estimate that the true incidence of non-monophyly is ∼23%, but with operational factors still being included. Within the operational factors, we separately assessed the frequency of taxonomic limitations (presence of overlooked cryptic and oversplit species) and identification uncertainties. We observed that operational factors are potentially present in more than half (58.6%) of the detected cases of non-monophyly. Furthermore, we observed that in about 20% of non-monophyletic species and entangled species, the lineages involved are either allopatric or parapatric-conditions where species delimitation is inherently subjective and particularly dependent on the species concept that has been adopted. These observations suggest that species-level non-monophyly in COI gene trees is less common than previously supposed, with many cases reflecting misidentifications, the subjectivity of species delimitation or other operational factors.


Assuntos
Classificação/métodos , Lepidópteros/classificação , Lepidópteros/genética , Filogenia , Animais , Viés , Código de Barras de DNA Taxonômico , DNA Mitocondrial , Genes Mitocondriais
17.
PLoS One ; 11(2): e0148423, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26859488

RESUMO

The morphological species delimitations (i.e. morphospecies) have long been the best way to avoid the taxonomic impediment and compare insect taxa biodiversity in highly diverse tropical and subtropical regions. The development of DNA barcoding, however, has shown great potential to replace (or at least complement) the morphospecies approach, with the advantage of relying on automated methods implemented in computer programs or even online rather than in often subjective morphological features. We sampled moths extensively for two years using light traps in a patch of the highly endangered Atlantic Forest of Brazil to produce a nearly complete census of arctiines (Noctuoidea: Erebidae), whose species richness was compared using different morphological and molecular approaches (DNA barcoding). A total of 1,075 barcode sequences of 286 morphospecies were analyzed. Based on the clustering method Barcode Index Number (BIN) we found a taxonomic bias of approximately 30% in our initial morphological assessment. However, a morphological reassessment revealed that the correspondence between morphospecies and molecular operational taxonomic units (MOTUs) can be up to 94% if differences in genitalia morphology are evaluated in individuals of different MOTUs originated from the same morphospecies (putative cases of cryptic species), and by recording if individuals of different genders in different morphospecies merge together in the same MOTU (putative cases of sexual dimorphism). The results of two other clustering methods (i.e. Automatic Barcode Gap Discovery and 2% threshold) were very similar to those of the BIN approach. Using empirical data we have shown that DNA barcoding performed substantially better than the morphospecies approach, based on superficial morphology, to delimit species of a highly diverse moth taxon, and thus should be used in species inventories.


Assuntos
Mariposas/classificação , Mariposas/genética , Animais , Biodiversidade , Brasil , Código de Barras de DNA Taxonômico/métodos , Feminino , Variação Genética , Masculino , Biologia Molecular , Mariposas/anatomia & histologia , Especificidade da Espécie , Clima Tropical
18.
Biodivers Data J ; (3): e6313, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379469

RESUMO

BACKGROUND: Comprehensive biotic surveys, or 'all taxon biodiversity inventories' (ATBI), have traditionally been limited in scale or scope due to the complications surrounding specimen sorting and species identification. To circumvent these issues, several ATBI projects have successfully integrated DNA barcoding into their identification procedures and witnessed acceleration in their surveys and subsequent increase in project scope and scale. The Biodiversity Institute of Ontario partnered with the rare Charitable Research Reserve and delegates of the 6th International Barcode of Life Conference to complete its own rapid, barcode-assisted ATBI of an established land trust in Cambridge, Ontario, Canada. NEW INFORMATION: The existing species inventory for the rare Charitable Research Reserve was rapidly expanded by integrating a DNA barcoding workflow with two surveying strategies - a comprehensive sampling scheme over four months, followed by a one-day bioblitz involving international taxonomic experts. The two surveys resulted in 25,287 and 3,502 specimens barcoded, respectively, as well as 127 human observations. This barcoded material, all vouchered at the Biodiversity Institute of Ontario collection, covers 14 phyla, 29 classes, 117 orders, and 531 families of animals, plants, fungi, and lichens. Overall, the ATBI documented 1,102 new species records for the nature reserve, expanding the existing long-term inventory by 49%. In addition, 2,793 distinct Barcode Index Numbers (BINs) were assigned to genus or higher level taxonomy, and represent additional species that will be added once their taxonomy is resolved. For the 3,502 specimens, the collection, sequence analysis, taxonomic assignment, data release and manuscript submission by 100+ co-authors all occurred in less than one week. This demonstrates the speed at which barcode-assisted inventories can be completed and the utility that barcoding provides in minimizing and guiding valuable taxonomic specialist time. The final product is more than a comprehensive biotic inventory - it is also a rich dataset of fine-scale occurrence and sequence data, all archived and cross-linked in the major biodiversity data repositories. This model of rapid generation and dissemination of essential biodiversity data could be followed to conduct regional assessments of biodiversity status and change, and potentially be employed for evaluating progress towards the Aichi Targets of the Strategic Plan for Biodiversity 2011-2020.

19.
Biodivers Data J ; (3): e4078, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25829855

RESUMO

Saproxylic beetles - associated with dead wood or with other insects, fungi and microorganisms that decompose it - play a major role in forest nutrient cycling. They are important ecosystem service providers and are used as key bio-indicators of old-growth forests. In France alone, where the present study took place, there are about 2500 species distributed within 71 families. This high diversity represents a major challenge for specimen sorting and identification. The PASSIFOR project aims at developing a DNA metabarcoding approach to facilitate and enhance the monitoring of saproxylic beetles as indicators in ecological studies. As a first step toward that goal we assembled a library of DNA barcodes using the standard genetic marker for animals, i.e. a portion of the COI mitochondrial gene. In the present contribution, we release a library including 656 records representing 410 species in 40 different families. Species were identified by expert taxonomists, and each record is linked to a voucher specimen to enable future morphological examination. We also highlight and briefly discuss cases of low interspecific divergences, as well as cases of high intraspecific divergences that might represent cases of overlooked or cryptic diversity.

20.
Zookeys ; (473): 157-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25632257

RESUMO

Europe has one of the best-known Lepidopteran faunas in the world, yet many species are still being discovered, especially in groups of small moths. Here we describe a new gracillariid species from the south-eastern Alps, Callistobasistrigella Huemer, Deutsch & Triberti, sp. n. It shows differences from its sister species Callistocoffeella in morphology, the barcode region of the cytochrome c oxidase I gene and the nuclear gene histone H3. Both Callistobasistrigella and Callistocoffeella can co-occur in sympatry without evidence of admixture. Two Callistobasistrigella specimens show evidence of introgression. We highlight the importance of an integrative approach to delimit species, combining morphological and ecological data with mitochondrial and nuclear sequence data. Furthermore, in connection with this study, Ornixblandella Müller-Rutz, 1920, syn. n. is synonymized with Callistocoffeella (Zetterstedt, 1839).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...